RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

THIRD YEAR B.A./B.SC. FIFTH SEMESTER (July – December), 2012 Mid-Semester Examination, September 2012

Date : 10/09/2012

MATHEMATICS (Honours)

Time : 2 pm – 4 pm

~

. •

Paper : V

Full Marks : 50

[Use Separate Answer Scripts for each group]

<u>Group – A</u>

Answer any five questions :			
1.	Let G be a group and H be a subgroup of G. Define $N(H) = \{g \in G : gHg^{-1} = H\}$. Prove that $N(H)$ is subgroup of G. Also show that if $[G:H] = 2$ then H is normal in G.	a [3+2]	
2.	Prove that the centre $Z(G)$ of a group G is a normal subgroup of G. Prove also that the symmetric gr S_3 has a trivial centre.	oup [2+3]	
3.	a) Let G be a non-commutative group of order 2p, p is prime. Without using Cauchy's theorem prototat G is not simple.	ove	
	b) Le G be a group and $a \in Z(G)$. Prove that $\langle a \rangle$ is normal in G.	[3+2]	
4.	a) Let $G = (R, +)$, $G' = (T, \cdot)$ where $T = \{z \in C : z = 1\}$. Prove that $G/Z \cong G'$.		
	b) Prove that the groups $(R, +)$ and (R^*, \cdot) are not isomorphic where $R^* = R - \{o\}$.	[3+2]	
5.	Define inner automorphism of a group G. Prove that $G/Z(G) \cong Inn(G)$.	[1+4]	
6.	a) If $G = (Z, +)$, find Aut (G).		
	b) Prove that there does not exist an onto homomorphism from $(Z_6, +)$ to $(Z_4, +)$.	[3+2]	
7.	Let H, K be normal subgroups of a group G. If G is an internal direct product of H and K then prove that $G \cong H \times K$ and $G/H \cong K$.	[5]	
8.	a) Prove that $Z \times Z$ is not cyclic.		
	b) Show that $(Z, +)$ is not an internal direct product of two nontrivial subgroups.	[3+2]	
<u>Group – B</u>			
An	swer any three :	[3×5]	
9.	Deduce Newtons forward interpolation polynomial. What is the importance of introducing u?	[4+1]	
10. What is numerical differentiation? Obtain numerical differentiation for Lagranges interpolation polynomial at a point which is not a node. [2+3]			
11.	Obtain Newton Cotes formula for numerical integration. Deduce Simpson's $\frac{1}{3}$ rule from it.	[3+2]	
12 Discuss the method of hisperior for numerical solution of the equation $f(x) = 0$. Why it is a sure			

12. Discuss the method of bisection for numerical solution of the equation f(x) = 0. Why it is a sure convergent method? [4+1]

13. Formulate Newton Raphson method for finding numerical solution of f(x) = 0. Why it is called a method of tangents. [4+1]

Answer any two :		
<i>,</i>	Prove by Mathematical Induction that $3^{2n} - 8n - 1$ is divisible by 64 for all $n \in N$. If a is prime to b, prove that $a + b$ is prime to ab.	[3+2]
	Prove that any positive integer is either 1 or a prime or can be expressed as product of primes. If p is prime and $p \mid ab$ prove that $p \mid a$ or $p \mid b$.	[3+2]
16. a) b)	State and prove Euclid's theorem. If p is prime > 3 prove that $24 p^2 - 1$.	[3+2]

